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Deformed boson algebras and the quantum double
construction
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‡ Department of Physics, University of Tasmania, GPO Box 252C Hobart, Australia 7001

Received 20 May 1996

Abstract. The quantum double construction of aq-deformed boson algebra possessing a Hopf
algebra structure is carried out explicitly. TheR-matrix thus obtained is compared with the
existing literature.

1. Introduction

Recently there has been an increasing interest in the deformation of Lie (super)algebras [1–6]
and their quasitriangular Hopf algebra nature [7], mainly because of their wide applications
in mathematical physics. Parallel attempts to consistentlyq-deform oscillator algebras,
both independently and in connection with quantum group realizations, also appeared. One
should mention the Arik–Coon oscillator [8]:

aa† − qa†a = I (1)

the Macfarlane–Biedenharn [9, 10], and Sun and Fu [11] oscillators (see (3) and (4) below),
the Chakrabarti–Jagannathan two-parameter oscillator [12]

aa† − pa†a = q−N (2)

and the Calogero–Vasiliev oscillator [13]

[a, a†] = I + 2ν(−1)N (3)

with its q-deformation by Macfarlane [14]

aa† − q±(I+2νK)a†a = [I + 2νK]qq
∓(N+ν−νK) K = (−1)N (4)

where as usual [x]q = (qx − q−x)/(q − q−1). In addition, the Katriel–Quesne minimally
deformed oscillators [15] successfully attempt a unified treatment of the existing deformed
oscillators. Generalizations ofq-boson defining relations, in particular those of (1), and (7)
and (8) below have also been studied [16–22].

The main aim of this paper is, on the one hand, to point out the ambiguous validity of
an R-matrix obtained from a definition ofq-boson algebra endowed with a Hopf algebra
structure [23, 24] and on the other to demonstrate the quantum double construction [1, 25, 26]
for this algebra which will lead to an unambiguously validR-matrix. We shall focus on
the q-deformed boson algebras of the types which first appeared in [9, 10] and [11], which
will be denoted here byL, and usually taken to be generated bya, a† andN subject to the
following commutation relations:

[N, a] = −a [N, a†] = a† (5)
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together withone out of the following list of additional relations:

[a, a†] = [N + I ]q − [N ]q (6)

aa† − q−1a†a = qN (7)

aa† − qa†a = q−N (8)

a†a = [N ]q aa† = [N + I ]q (9)

where I is the unit ofL and q is not a root of unity. Whenq = 1 we obtain the well
known defining relations of the undeformed boson algebra. It should be mentioned that the
consistency of the above definitions is justified as they can also be obtained fromslq(2) by
contraction [27–29]. The analysis of representations ofL is quite rich [22, 30, 31], but the
most usually used is theq-Fock representation (which has been shown [32] to be isomorphic
with the usual boson Fock space by expressing theq-bosons as suitable functions of the
undeformed bosons) given by

|n〉 = ([n]q !)1/2(a†)n|0〉 N |n〉 = n|n〉
a†|n〉 = [n+ 1]1/2q |n+ 1〉 a|n〉 = [n]1/2

q |n− 1〉 (10)

wheren = 0, 1, . . . . Using this representation, one can also show [29, 32, 33] the equivalence
amongst the above definitions, whichdoes notimply, though, an equivalence at the abstract
algebraic level (as has been demonstrated in [33]).

The most important point concerns the Hopf algebra structure of the deformed boson
algebra. Initially Hong Yan [23] showed that whenL is defined by (5) and (6) (with
N → N − 1

2, see (11) below)L is a Hopf algebra. Later this result was generalized in [33]
where (5) was also generalized. We shall concentrate hereafter on the Hopf algebraL as
defined in [23] by (5) and a symmetrized version of (6), namely

[a, a†] = [N + 1
2]q − [N − 1

2]q . (11)

The structure of this paper is as follows. In section 2 we give general information on
quasitriangular Hopf algebras, and also present the model of [23], focusing mainly on the
claimedR-matrix and pointing out some inconsistencies in its properties. In section 3, by
demonstrating the method of quantum double construction, we apply it to the Hopf algebra
L defined by (5) and (11) to obtained a validR-matrix which can be compared with that
of [23]. Finally we conclude presenting a generalization of (16) below and of the obtained
R-matrix.

2. Quasitriangular Hopf algebra structure of the boson algebraL

Consider an algebraA, say overC, with multiplicationm : A⊗A → A (i.e.m(a⊗b) = ab,
∀a and ∀b ∈ A) and unitu : C → A (i.e. u(1) = I , the identity onA) endowed with a
Hopf algebra structure, that is having a coproduct1 : A → A ⊗ A, counit ε : A → C
(which are homomorphisms) and antipodeS : A → A (which is an antihomomorphism, i.e.
S(ab) = S(b)S(a)) with the following consistency conditions:

(id ⊗1)1(a) = (1⊗ id)1(a)

m(id ⊗ S)1(a) = m(S ⊗ id)1(a) = ε(a)1

(ε ⊗ id)1(a) = (id ⊗ ε)1(a) = a. (12)

Note also that we haveε(I ) = 1, S(I) = I and ε(S(a)) = ε(a), ∀a ∈ A. Following
Sweedler [7] we write

1(a) =
∑
(a)

a(1) ⊗ a(2) ∀a ∈ A
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and generally

1n(a) = (1⊗ I⊗(n−1))1n−1(a) =
∑
(a)

a(1) ⊗ a(2) · · · ⊗ a(n+1) for n>2. (13)

Let T denote the twist map onA ⊗ A, T (a ⊗ b) = b ⊗ a and assume thatS−1, the
inverse of the antipode, exists. Then there exists an opposite Hopf algebra structure onA

with coproduct and antipodeT1 andS−1, respectively. According to Drinfeld [1] a Hopf
algebraA is called quasitriangular if there exists an invertible elementR such that

R =
∑
i

ai ⊗ bi ∈ A⊗ A

T1(a)R = R1(a) ∀a ∈ A. (14)

Then it can be shown thatR satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12

where

(1⊗ I )R = R13R23 (I ⊗1)R = R13R12. (15)

Turning now to the algebraL given by (5) and (11), the coproduct1, counitε and antipodeS
are respectively as follows:

1(N) = N ⊗ I + I ⊗N − iα

γ
I ⊗ I

1(a) = (a ⊗ qN/2 + iq−N/2 ⊗ a) e−iα/2

1(a†) = (a† ⊗ qN/2 + iq−N/2 ⊗ a†) e−iα/2

ε(N) = iα

γ
ε(a) = ε(a†) = 0 ε(I ) = 1

S(N) = −N + 2iα

γ
I

S(a) = −q−1/2a

S(a†) = −q1/2a† (16)

where α = 2κπ + π/2, (κ ∈ Z) and γ = ln q. The consistency of these operations
can be verified by direct calculation using (5) and (11) and the consistency relations (12).
Moreover, the idealK of L generated byC = a†a − [N − 1

2]q is not a Hopf ideal (as
1(C)/∈K ⊗ L+ L⊗K) and thus the quotient algebra isomorphic to the one generated by
(5) and botha†a = [N − 1

2]q andaa† = [N + 1
2]q is not a Hopf algebra.

Although the Fock space (10), but withN |n〉 = (n+ 1/2)|n〉, furnishes a representation
of L, we can use a more general one given by

N |n〉 = (n+ c)|n〉
a|n〉 = ([n+ c − 1/2]q − [c − 1/2]q)

1/2|n− 1〉
a†|n〉 = ([n+ c + 1/2]q − [c − 1/2]q)

1/2|n+ 1〉 (17)

wherec is a non-zero complex number. Ifc = 1
2 we obtain the space just mentioned above.

For |q| 6= 1 we can choose the states|n〉 to be given by

|n〉 =
( in(q1/2 + q−1/2)n0+

q1/2(2c + iπ/ ln q)

(q1/2 − q−1/2)n[n]q1/2!0+
q1/2(n+ 2c + iπ/ ln q)

)1/2

a†n|0〉
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or

|n〉 =
(
(−i)n(q1/2 + q−1/2)n0+

q1/2(−n− 2c + 1 − iπ/ ln q)

(q1/2 − q−1/2)n[n]q1/2!0+
q1/2(−2c + 1 − iπ/ ln q)

)1/2

a†n |0〉 (18)

whichever is well defined given a fixed value ofc and lnq. Note that at least one of
the above expressions is always well defined, and if they are both well defined they are
equal. The symmetricq1/2-factorial [n]q1/2! is defined similarly to the symmetricq-factorial
as in [9, 34], and the symmetricq1/2-gamma function0+

q1/2(z) similarly to the symmetric
q-gamma function0+

q (z) as in [35] and〈0|0〉 = 1. If we now consider the quantum algebra
Uq1/2(sl(2)) defined by

[e, f ] = [h]q1/2 [h, e] = 2e [h, f ] = −2f (19)

we can easily verify that the following expressions forh, e andf in terms of theq-bosons
do indeed satisfy (19)

h = 2N − 2iα

γ
e = λa† f = i(q1/2 + q−1/2)

λ(q1/2 − q−1/2)
a (20)

whereλ is some constant. In this realization ofUq1/2(sl(2)), the central elementC is the
deformed quadratic Casimir. Conversely, givenUq(sl(2)) as in (19) (withq1/2 → q) and
defining

N = 1

2
h+ iα

4 lnq
a = µf a† = −i(q − q−1)

µ(q + q−1)
e (21)

whereµ is some constant, thenN , a anda† satisfy the relations (11) withq2 in the place
of q, and so theq2-boson algebra is isomorphic to a quotient algebra ofUq(sl(2)). This
realization is similar to that of [36]. Finally, it should also be mentioned that aq-deformed
differential operator algebra was associated withL also possessing a Hopf algebra structure
in [24].

The author of [23] defines anR-matrix of L as the invertible element that interwines
between the coproduct of (16) and a coproduct1̄ that is obtained from that of (16) by
changingq → q−1 so that

R1 = 1̄R. (22)

This definition is claimed to lead to the followingR-matrix [23]:

R = q(N−(iα/γ )I)⊗(N−(iα/γ )I)− 1
2N⊗N

∞∑
k=0

ik(1 + q−1)kq−k(k+1)/4∏k
j=1[j/2]q

(a†)k ⊗ q−kN/2ak. (23)

Moreover, the author states thatR satisfies the Yang–Baxter equation (15) (the sameR

appears also in [36]). Certain comments relative to the above definition ofR have to be
made. One would expect thatR should be defined by a relation such as (14) as this would
justify its nature as an interwiner between the Hopf algebra structure and the opposite one.
Instead it seems that in [23]R is not treated as such.̄1 together with the counit and antipode
given in (16) does not constitute a Hopf algebra, not even a coalgebra, and also1̄ taken
with the counit and the inverse ofS in (16) does not constitute a Hopf algebra either. It is
the Hopf structure obtained from (16) by settingq → q−1 everywhere which is consistent
with 1̄ (obviously this change leaves (11) unaffected). It should be noted that definition
(22) is reminiscent of the case for quantum groups [5] where the definition of the reduced
R̄-matrix is given byR̄T 1̄ = T1R̄ (T being the twist map) and satisfies relations similar
to the Yang–Baxter equation (theR-matrix then can be expressed as a product ofR̄ with an
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appropriateq-exponentiated function of the Cartan subalgebra basis of the Lie algebra and
satisfies (14)). In fact̄R has also been used by Lusztig [37]. These considerations suggest
that (22) alone cannot be used as a definition either of anR-matrix or of a reduced̄R-matrix.
One can indeed verify by direct calculation thatR given by (23)does notsatisfy any of the
relations (22), (15) and (14) or the relation for the reducedR̄-matrix mentioned above, for
exampleR1(N) = 1(N)R. It is the implementation of the natural definition ofR (14) that
leads to the correctR-matrix (whereT1 is compatible with the counit and coproduct given
in (16)) that we shall demonstrate in what follows using the quantum double construction
whose structure will now be presented.

3. The boson algebraL and the quantum double construction

Let A∗ denote the dual of a Hopf algebraA with elementsa∗ defined by(a∗, b) = a∗(b),
∀a ∈ A∗ and∀b ∈ A, where ( , ) is the natural bilinear formA∗⊗A → C (with A andA∗

regarded as vector spaces). We assume that

A0 = [a∗ ∈ A∗|kera∗ contains a cofinite two sided ideal ofA]

is dense inA∗, i.e. (A0)⊥ = [a ∈ A|(b∗, a) = 0, ∀b∗ ∈ A0] = (0). For A finite-
dimensional,A0 = A∗. Moreover, ifA is such that the intersection of all cofinite two-sided
ideals is(0), then for everya ∈ A and everyb∗ ∈ A0 we have

a =
∑
s

as(a
∗
s , a) b∗ =

∑
s

(b∗, as)a∗
s

whereas anda∗
s are the bases ofA andA0 such that(a∗

s , at ) = δst ands = 1, 2, . . . ,dimA.
Following Sweedler [7] we have the following.

Theorem. A0 becomes a Hopf algebra with multiplicationm0, unit u0, coproduct10,
antipodeS0 and counitε0 defined by

m0 = 1∗|A0⊗A0 u0 = ε∗|A0 (24)

10 = m∗|A0 S0 = S∗|A0 (25)

ε0(a∗) = (a∗, 1) ∀a∗ ∈ A0 (26)

wherem∗, 1∗, ε∗ andS∗ are the dual maps ofm, 1, ε andS, respectively. The identity
element ofA0 is given by the counit ofA.

In what will follow we shall consider the opposite Hopf algebra structure onA0, where
we keep the same multiplication, unit and counit ofA0, but we use the coproductT10 and
antipode(S0)

−1
given by

(T 10(a∗), b ⊗ c) = (a∗, cb) (27)

((S0)
−1
(a∗), b) = (a∗, S−1(b)) (28)

∀a∗ ∈ A0 andb, c ∈ A. Finally it should be borne in mind that bothA⊗ A0 andA0 ⊗ A

inherit a Hopf algebra structure with respective coproducts1′ and1′′ given by

1′ = (I ⊗ τ ⊗ I )(1⊗ T10) (29)

1′′ = (I ⊗ τ−1 ⊗ I )(T 10 ⊗1) (30)

whereτ is the twist isomorphismA⊗ A0 → A0 ⊗ A given byτ(a ⊗ b∗) = b∗ ⊗ a.
In the quantum double construction [1, 26] we first construct the vector spaceD(A)

called the quantum double ofA which is the vector space of all free products of the form
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ab∗, ∀a ∈ A and ∀b∗ ∈ A0. D(A) is isomorphic (as a vector space) withA⊗A0, the
isomorphism being given byψ(a ⊗ b∗) = ab∗, ∀a ∈ A and∀b∗ ∈ A0.

D(A) becomes an algebra by defining all products of the formb∗a, ∀a ∈ A and
∀b∗ ∈ A0, asb∗a = µ(b∗ ⊗ a) where theµ : A0 ⊗ A → D(A) given by

A0 ⊗ A
(tr⊗I⊗2)((S0)−1⊗I⊗3)1′′

−→ A0 ⊗ A
(I⊗2⊗tr)1′′

−→ A0⊗A τ−1−→ A⊗ A0 ψ→ D(A) (31)

where tr :A0 ⊗ A → C is given by tr(b∗ ⊗ a) = (b∗, a). Explicitly we have

b∗a =
∑
(a),(b∗)

((S0)
−1
((b∗)(1)), a(1))((b∗)(3), a(3))a(2)(b∗)(2). (32)

BothA andA0 are embedded inD(A) = A⊗A0 by identifying Ia∗ andaε with a∗ anda
respectively,∀a∗ ∈ A0 and∀a ∈ A.

D(A) becomes a quasitriangular Hopf algebra with coproduct1D, counit εD, and
antipodeSD and canonical elementR given by

1D(ab
∗) = 1(a)(T10)(b∗) (33)

εD(ab
∗) = ε(a)ε0(b∗) (34)

SD(ab
∗) = (S0)

−1
(b∗)S(a) (35)

R =
∑
s

as ⊗ a∗
s ∈ D(A)⊗D(A) (36)

R−1 = (SD ⊗ I )R (37)

where [as ] and [a∗
t ] are bases ofA andA0, respectively, such that(a∗

s , at ) = δst .
From now on we shall always treat the Hopf algebraL as belonging in the category

of quantized universal enveloping algebras. In that sense we considerL to be spanned by
elements of the form(N − (iα/γ )I)m · q−kN/2ak · qlN/2(a†)l (l, m, k = 0, 1, 2, . . .). We
shall denote byL+ andL− the Hopf subalgebras spanned by(N − (iα/γ )I)m · q−kN/2ak

and(N − (iα/γ )I)m · qlN/2(a†)l , respectively.
Following the method just described and similar in spirit with [25] we putA = L+ and

construct the quantum doubleD(L+) of L+ to obtain anR-matrix for L compatible with
definitions (14) and (15). We shall denote byu andm the unit and multiplication ofL+
while the coproduct1, counit ε and antipodeS are as in (16). TakingL+ to be generated
by N− (iα/γ )I andqN/2a†, we shall denote its basis byekm = qkN/2 (N − (iα/γ )I)m (a†)k

with k,m > 0.
As L+ is a coalgebra its dualL∗

+ is necessarily an algebra and via the above theorem,
L0

+ becomes a Hopf algebra. Let us now construct explicitlyL0
+. As a vector spaceL0

+ will
consist of all linear maps ofL+ on to C. We takeL0

+ to be generated by the functionals
ν, β on L+ and taking values inC defined by

ν

((
N − iα

γ
I

)n
qlN/2(a†)l

)
= δl0δn1 + iαδl0δn0

γ
(38)

β

((
N − iα

γ
I

)n
qlN/2(a†)l

)
= e−iα/2δl1

2n(1 + q−1)
(39)

and extending by linearity.
The Hopf algebra structure ofL0

+ can easily be found from the above theorem. We are
interested in the opposite Hopf algebra structure ofL0

+ where the multiplication, unit and
counit are as in the theorem but we use the opposite coproductT10 and antipode(S0)−1
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on L0
+ given by

T10(ν) = ν ⊗ 1∗ + 1∗ ⊗ ν − iα

γ
1∗ ⊗ 1∗ (40)

T10(β) = (
β ⊗ qν/2 + iq−ν/2 ⊗ β

)
e−iα/2 (41)

(S0)−1(ν) = − ν + (2iα/γ )1∗ (42)

(S0)−1(β) = − 1

q1/2
β (43)

where 1∗ is the identity onL0
+ (i.e. u0(1) = 1∗). Moreover,L0

+ inherits a Lie algebra
structure, with the non-zero Lie bracket given by

[ν, β] = −β (44)

as can be seen using (39). It is convenient to define a basis ofL0
+ given by

e∗km =
(
ν − iα

γ
1∗

)m
q−kν/2βk (45)

so that

e∗km(eln) =
(
q−kν/2

(
ν − iα

γ
1∗

)m
βk

) (
qlN/2

(
N − iα

γ
I

)n
(a†)l

)
= δklδmn

n!(−i)kqk(k+1)/4

γ n
·
k∏

j=1

[
j

2

]
q

. (46)

Observe that the mapν → N andβ → a defines an isomorphismL0
+ ∼= L−.

Consider now the quantum doubleD(L+) = L+ ⊗ L0
+. It is the vector space spanned

by all free productsab∗ which becomes an algebra by defining all products of the form
b∗a as was indicated above. Moreover, as was stated, it is a quasitriangular Hopf algebra
and thus, by appropriately normalizing the elementse∗km and eln using (46), the canonical
elementR given in (36) is realized as

R = q(N−(iα/γ )I)⊗(ν−(iα/γ )1∗)
∞∑
k=0

ikq−k(k+1)/4∏k
j=1[j/2]q

qkN/2(a†)k ⊗ q−kν/2βk ∈ D(L+). (47)

The relation of ourq-boson algebraL with D(L+) can now be obtained. Observe, firstly,
that we have the following quantum double intertwining relations betweenL+ andL0

+:

[N, ν] = 0 (48)

[N, β] = −β (49)

[ν, a†] = a† (50)

[β, a†] =
[
ν +N + 1

2

]
q

−
[
ν +N − 1

2

]
q

. (51)

Secondly, note that the elementν −N is central inD(L+) and generates a two-sided Hopf
ideal, call itM. The quotient Hopf algebraD(L+)/M, in which ν = N , can be identified
with the q-boson algebraL by identifying β with a and 1∗ with I . TheR-matrix is now
given by

R = q(N−(iα/γ )I)⊗(N−(iα/γ )I)
∞∑
k=0

ikq−k(k+1)/4∏k
j=1

[
j/2

]
q

qkN/2(a†)k ⊗ q−kN/2ak (52)

and satisfies the Yang–Baxter equation.
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4. Conclusion

The differences between (23) and (52) can now be read off and the cause of the inconsistency
of (23) is obvious. The representation theory of (11) in the spirit of [38], the relation of
(52) with theR-matrix of Uq(sl(2)), its connection with representations of the braid group
and possible relation with link invariances are under investigation. Finally, we conclude
with the observation that besides the Hopf algebra structure given by (16) a more general
one exists given by

1(N) = N ⊗ I + I ⊗N + βI ⊗ I

1(a) = (
a ⊗ qmN ± (−1)K iq(m±1)N ⊗ a

)
eiπ(2K+1)m/2

1(a†) = (
a† ⊗ q−(m±1)N ± (−1)K iq−mN ⊗ a†) eiπ(2K+1)(m±1)/2

ε(N) = −β ε(a) = ε(a†) = 0 ε(I ) = 1

S(N) = −N − 2βI

S(a) = ±i(−1)Kq−(m±1)NaqmS(N)

S(a†) = ±i(−1)KqmNa†q−(m±1)S(N) (53)

whereβ = iπ(2K + 1)/2γ , γ = ln q, m is an integer or half-integer andK is an integer.
The correspondingR-matrix is now given by

R = q∓(N+βI)⊗(N+βI)
∞∑
k=0

(±i)k(−1)Kk∏k
j=1

[
j/2

]
q

q−mk2∓ 1
4k(k−1)qmkN(a†)k ⊗ q−mkNak. (54)

The choicesm = 1
2, K = −2κ−1 (κ ∈ Z) and the lower sign in (53) and (54), lead directly

to (16) and (52), respectively.
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